309 research outputs found

    Circulating cell adhesion molecules in metabolically healthy obesity

    Get PDF
    Background/Objectives People with metabolically healthy obesity (MHO) may still have an increased risk for cardiovascular mortality compared to metabolically healthy lean (MHL) individuals. However, the mechanisms linking obesity to cardiovascular diseases are not entirely understood. We therefore tested the hypothesis that circulating cell adhesion molecules (CAMs) are higher in MHO compared to MHL individuals. Subjects/Methods Serum concentrations of soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), E-selectin and P-selectin were measured in age- and sex-matched groups of MHL (n = 32), MHO categorized into BMI-matched insulin sensitive (IS, n = 32) or insulin resistant (IR) obesity (n = 32) and people with metabolically unhealthy obesity (MUO, n = 32). Results Indeed, individuals with MHO have significantly higher sICAM-1, E-selectin, and P-selectin serum concentrations compared to MHL people. However, these CAMs are still significantly lower in IS compared to IR MHO. There was no difference between the groups in sVCAM-1 serum concentrations. Compared to all other groups, circulating adhesion molecules were significantly higher in individuals with MUO. Conclusions These findings suggest that obesity-related increased cardiovascular risk is reflected and may be mediated by significantly higher CAMs. The mechanisms causing elevated adhesion molecules even in the absence of overt cardio-metabolic risk factors and whether circulating CAMs could predict cardiovascular events need to be explored

    Population-genetic comparison of the Sorbian isolate population in Germany with the German KORA population using genome-wide SNP arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Sorbs are an ethnic minority in Germany with putative genetic isolation, making the population interesting for disease mapping. A sample of N = 977 Sorbs is currently analysed in several genome-wide meta-analyses. Since genetic differences between populations are a major confounding factor in genetic meta-analyses, we compare the Sorbs with the German outbred population of the KORA F3 study (N = 1644) and other publically available European HapMap populations by population genetic means. We also aim to separate effects of over-sampling of families in the Sorbs sample from effects of genetic isolation and compare the power of genetic association studies between the samples.</p> <p>Results</p> <p>The degree of relatedness was significantly higher in the Sorbs. Principal components analysis revealed a west to east clustering of KORA individuals born in Germany, KORA individuals born in Poland or Czech Republic, Half-Sorbs (less than four Sorbian grandparents) and Full-Sorbs. The Sorbs cluster is nearest to the cluster of KORA individuals born in Poland. The number of rare SNPs is significantly higher in the Sorbs sample. FST between KORA and Sorbs is an order of magnitude higher than between different regions in Germany. Compared to the other populations, Sorbs show a higher proportion of individuals with runs of homozygosity between 2.5 Mb and 5 Mb. Linkage disequilibrium (LD) at longer range is also slightly increased but this has no effect on the power of association studies.</p> <p>Oversampling of families in the Sorbs sample causes detectable bias regarding higher FST values and higher LD but the effect is an order of magnitude smaller than the observed differences between KORA and Sorbs. Relatedness in the Sorbs also influenced the power of uncorrected association analyses.</p> <p>Conclusions</p> <p>Sorbs show signs of genetic isolation which cannot be explained by over-sampling of relatives, but the effects are moderate in size. The Slavonic origin of the Sorbs is still genetically detectable.</p> <p>Regarding LD structure, a clear advantage for genome-wide association studies cannot be deduced. The significant amount of cryptic relatedness in the Sorbs sample results in inflated variances of Beta-estimators which should be considered in genetic association analyses.</p

    Fasting indices of glucose-insulin-metabolism across life span and prediction of glycemic deterioration in children with obesity from new diagnostic cut-offs

    Get PDF
    Background: Fasting indices of glucose-insulin-metabolism are an easy and affordable tool to assess insulin resistance. We aimed to establish reference ranges for fasting insulin indices that reflect age-dependent variation over the entire life span and subsequently test their clinical application regarding the prediction of glycemic deterioration in children. Methods: We calculated age- and puberty-dependent reference values for HOMA-IR, HOMA2-IR, HOMA-β, McAuley index, fasting insulin, and fasting glucose from 6994 observations of 5512 non-obese healthy subjects aged 5–80 years. Applying those references, we determined the prevalence of insulin resistance among 2538 subjects with obesity. Furthermore, we investigated the intraindividual stability and the predictive values for future dysglycemia of these fasting indices in 516 children and adolescents with obesity up to 19 years of follow-up. We validated the results in three independent cohorts. Findings: There was a strong age-dependent variation of all indices throughout the life span, including prolonged recovery of pubertal insulin resistance and a subsequent continuous increase throughout adulthood. Already from age 5 years onwards, &gt;40% of children with obesity presented with elevated parameters of insulin resistance. Applying newly developed reference ranges, insulin resistance among children with obesity doubled the risk for future glycemic deterioration (HOMA-IR HR 1.88 (95% CI 1.1–3.21)), fasting insulin HR 1.89 (95% CI 1.11–3.23). In contrast, fasting glucose alone was not predictive for emerging dysglycemia in children with obesity (HR 1.03 (95% CI 0.62–1.71)). The new insulin-based thresholds were superior to fasting glucose and HbA1c in detecting children eventually manifesting with dysglycemia in prospective analyses. Interpretation: The variation of fasting glucose-insulin-metabolism across the life span necessitates age-specific reference ranges. The improved prediction of future glycemic deterioration by indices based on fasting insulin beyond simple glucose measures alone could help to stratify risk characteristics of children with obesity in order to guide patient-tailored prevention and intervention approaches. Funding: German Research Foundation (DFG)—through SFB 1052, project number 209933838, subproject C5; Federal Ministry of Education and Research, Germany; European Union– European Regional Development Fund; Free State of Saxony. The German Diabetes Association, the CarbHealth consortium (01EA1908B). EU-IMI2-Consortium SOPHIA (grant agreement No 875534), German Center for Diabetes Research (DZD), grant number 82DZD14E03.</p

    Effects of Genetic Variants in ADCY5, GIPR, GCKR and VPS13C on Early Impairment of Glucose and Insulin Metabolism in Children

    Get PDF
    OBJECTIVE: Recent genome-wide association studies identified novel candidate genes for fasting and 2 h blood glucose and insulin levels in adults. We investigated the role of four of these loci (ADCY5, GIPR, GCKR and VPS13C) in early impairment of glucose and insulin metabolism in children. RESEARCH DESIGN AND METHODS: We genotyped four variants (rs2877716; rs1260326; rs10423928; rs17271305) in 638 Caucasian children with detailed metabolic testing including an oGTT and assessed associations with measures of glucose and insulin metabolism (including fasting blood glucose, insulin levels and insulin sensitivity/secretion indices) by linear regression analyses adjusted for age, sex, BMI-SDS and pubertal stage. RESULTS: The major allele (C) of rs2877716 (ADCY5) was nominally associated with decreased fasting plasma insulin (P = 0.008), peak insulin (P = 0.009) and increased QUICKI (P = 0.016) and Matsuda insulin sensitivity index (P = 0.013). rs17271305 (VPS13C) was nominally associated with 2 h blood glucose (P = 0.009), but not with any of the insulin or insulin sensitivity parameters. We found no association of the GIPR and GCKR variants with parameters of glucose and insulin metabolism. None of the variants correlated with anthropometric traits such as height, WHR or BMI-SDS, which excluded potential underlying associations with obesity. CONCLUSIONS: Our data on obese children indicate effects of genetic variation within ADCY5 in early impairment of insulin metabolism and VPS13C in early impairment of blood glucose homeostasis

    Genetic and Evolutionary Analyses of the Human Bone Morphogenetic Protein Receptor 2 (BMPR2) in the Pathophysiology of Obesity

    Get PDF
    Human bone morphogenetic protein receptor 2 (BMPR2) is essential for BMP signalling and may be involved in the regulation of adipogenesis. The BMPR2 locus has been suggested as target of recent selection in human populations. We hypothesized that BMPR2 might have a role in the pathophysiology of obesity.Evolutionary analyses (dN/dS, Fst, iHS) were conducted in vertebrates and human populations. BMPR2 mRNA expression was measured in 190 paired samples of visceral and subcutaneous adipose tissue. The gene was sequenced in 48 DNA samples. Nine representative single nucleotide polymorphisms (SNPs) were genotyped for subsequent association studies on quantitative traits related to obesity in 1830 German Caucasians. An independent cohort of 925 Sorbs was used for replication. Finally, relation of genotypes to mRNA in fat was examined.The evolutionary analyses indicated signatures of selection on the BMPR2 locus. BMPR2 mRNA expression was significantly increased both in visceral and subcutaneous adipose tissue of 37 overweight (BMI>25 and <30 kg/m²) and 80 obese (BMI>30 kg/m²) compared with 44 lean subjects (BMI< 25 kg/m²) (P<0.001). In a case-control study including lean and obese subjects, two intronic SNPs (rs6717924, rs13426118) were associated with obesity (adjusted P<0.05). Combined analyses including the initial cohort and the Sorbs confirmed a consistent effect for rs6717924 (combined P = 0.01) on obesity. Moreover, rs6717924 was associated with higher BMPR2 mRNA expression in visceral adipose tissue.Combined BMPR2 genotype-phenotype-mRNA expression data as well as evolutionary aspects suggest a role of BMPR2 in the pathophysiology of obesity

    The Effect of ACACB cis-Variants on Gene Expression and Metabolic Traits

    Get PDF
    Acetyl Coenzyme A carboxylase β (ACACB) is the rate-limiting enzyme in fatty acid oxidation, and continuous fatty acid oxidation in Acacb knock-out mice increases insulin sensitivity. Systematic human studies have not been performed to evaluate whether ACACB variants regulate gene expression and insulin sensitivity in skeletal muscle and adipose tissues. We sought to determine whether ACACB transcribed variants were associated with ACACB gene expression and insulin sensitivity in non-diabetic African American (AA) and European American (EA) adults.ACACB transcribed single nucleotide polymorphisms (SNPs) were genotyped in 105 EAs and 46 AAs whose body mass index (BMI), lipid profiles and ACACB gene expression in subcutaneous adipose and skeletal muscle had been measured. Allelic expression imbalance (AEI) was assessed in lymphoblast cell lines from heterozygous subjects in an additional EA sample (n = 95). Selected SNPs were further examined for association with insulin sensitivity in a cohort of 417 EAs and 153 AAs.ACACB transcribed SNP rs2075260 (A/G) was associated with adipose ACACB messenger RNA expression in EAs and AAs (p = 3.8×10(-5), dominant model in meta-analysis, Stouffer method), with the (A) allele representing lower gene expression in adipose and higher insulin sensitivity in EAs (p = 0.04). In EAs, adipose ACACB expression was negatively associated with age and sex-adjusted BMI (r = -0.35, p = 0.0002).Common variants within the ACACB locus appear to regulate adipose gene expression in humans. Body fat (represented by BMI) may further regulate adipose ACACB gene expression in the EA population

    A Common Variant of PNPLA3 (p.I148M) Is Not Associated with Alcoholic Chronic Pancreatitis

    Get PDF
    Contains fulltext : 110441.pdf (publisher's version ) (Open Access)BACKGROUND: Chronic pancreatitis (CP) is an inflammatory disease that in some patients leads to exocrine and endocrine dysfunction. In industrialized countries the most common aetiology is chronic alcohol abuse. Descriptions of associated genetic alterations in alcoholic CP are rare. However, a common PNPLA3 variant (p.I148M) is associated with the development of alcoholic liver cirrhosis (ALC). Since, alcoholic CP and ALC share the same aetiology PNPLA3 variant (p.I148M) possibly influences the development of alcoholic CP. METHODS: Using melting curve analysis we genotyped the variant in 1510 patients with pancreatitis or liver disease (961 German and Dutch alcoholic CP patients, 414 German patients with idiopathic or hereditary CP, and 135 patients with ALC). In addition, we included in total 2781 healthy controls in the study. RESULTS: The previously published overrepresentation of GG-genotype was replicated in our cohort of ALC (p-value <0.0001, OR 2.3, 95% CI 1.6-3.3). Distributions of genotype and allele frequencies of the p.I148M variant were comparable in patients with alcoholic CP, idiopathic and hereditary CP and in healthy controls. CONCLUSIONS: The absence of an association of PNPLA3 p.I148M with alcoholic CP seems not to point to a common pathway in the development of alcoholic CP and alcoholic liver cirrhosis

    Reduced Food Intake and Body Weight in Mice Deficient for the G Protein-Coupled Receptor GPR82

    Get PDF
    G protein-coupled receptors (GPCR) are involved in the regulation of numerous physiological functions. Therefore, GPCR variants may have conferred important selective advantages during periods of human evolution. Indeed, several genomic loci with signatures of recent selection in humans contain GPCR genes among them the X-chromosomally located gene for GPR82. This gene encodes a so-called orphan GPCR with unknown function. To address the functional relevance of GPR82 gene-deficient mice were characterized. GPR82-deficient mice were viable, reproduced normally, and showed no gross anatomical abnormalities. However, GPR82-deficient mice have a reduced body weight and body fat content associated with a lower food intake. Moreover, GPR82-deficient mice showed decreased serum triacylglyceride levels, increased insulin sensitivity and glucose tolerance, most pronounced under Western diet. Because there were no differences in respiratory and metabolic rates between wild-type and GPR82-deficient mice our data suggest that GPR82 function influences food intake and, therefore, energy and body weight balance. GPR82 may represent a thrifty gene most probably representing an advantage during human expansion into new environments

    Genome-Wide Association Study Identifies Two Novel Regions at 11p15.5-p13 and 1p31 with Major Impact on Acute-Phase Serum Amyloid A

    Get PDF
    Elevated levels of acute-phase serum amyloid A (A-SAA) cause amyloidosis and are a risk factor for atherosclerosis and its clinical complications, type 2 diabetes, as well as various malignancies. To investigate the genetic basis of A-SAA levels, we conducted the first genome-wide association study on baseline A-SAA concentrations in three population-based studies (KORA, TwinsUK, Sorbs) and one prospective case cohort study (LURIC), including a total of 4,212 participants of European descent, and identified two novel genetic susceptibility regions at 11p15.5-p13 and 1p31. The region at 11p15.5-p13 (rs4150642; p = 3.20×10−111) contains serum amyloid A1 (SAA1) and the adjacent general transcription factor 2 H1 (GTF2H1), Hermansky-Pudlak Syndrome 5 (HPS5), lactate dehydrogenase A (LDHA), and lactate dehydrogenase C (LDHC). This region explains 10.84% of the total variation of A-SAA levels in our data, which makes up 18.37% of the total estimated heritability. The second region encloses the leptin receptor (LEPR) gene at 1p31 (rs12753193; p = 1.22×10−11) and has been found to be associated with CRP and fibrinogen in previous studies. Our findings demonstrate a key role of the 11p15.5-p13 region in the regulation of baseline A-SAA levels and provide confirmative evidence of the importance of the 1p31 region for inflammatory processes and the close interplay between A-SAA, leptin, and other acute-phase proteins
    • …
    corecore